Practical Applications of the Food Handling Practices Model

Julia Marasteanu, FDA, OC Econ

What is the Food Handling Practices Model?

- It is a quantitative model that estimates potential public health benefits ("potentially avoidable cases of food borne illnesses") associated with changes in food handling practices in retail and household establishments
- This was a collaboration between the Research Triangle Institute (RTI) International, and the Food and Drug Administration (2003)
- Data sources and Expert Elicitation updated by Eastern Research Group (ERG) (2009)
- Publicly available to download and use at <u>http://foodrisk.org/resources/display/27</u>

How does it work (what are our parameters)?

					Probabilities that
	Probabilities that factor	Probabilities that, given the factors occur, the		· · ·	noticeable
Proportions		servings are contaminated		the servings are allowed to grow	occurs
Proportions	Probability that	Probability that inappropriate		Probability that inappropriate time or	
Annual servings of the ith food category	inappropriate hand washing			temperature for cooking leads to	ingestion results in
consumed in the United States					noticeable FBI
	OCCURS	contamination	cooking occurs	pathogen growth	
Probability that a serving of the ith food	Probability that				
category is contaminated with the jth	inappropriate bare-hand	Probability that inappropriate		Probability that inappropriate time or	
pathogen when it leaves the final supply	contact with RTE foods	bare-hand contact with RTE		temperature for reheating leads to	requires medical
source	occurs	foods leads to contamination	reheating occurs	pathogen growth	treatment
	Probability that				
Proportion of annual servings of the ith food	inappropriate bare-hand	Probability that inappropriate		Probability that inappropriate time or	
category that reaches final consumers	contact with RTC foods	bare-hand contact with RTC	time or temperature for	temperature for cooling leads to	requires
hrough a retail establishment	occurs	foods leads to contamination	cooling occurs	pathogen growth	hospitalization
	Probability that				
Proportion of total annual servings of ith food	inappropriate gloved-hand			Probability that inappropriate time or	
category served or sold to consumers by the	contact with RTE foods	gloved-hand contact with RTE	time or temperature for cold	temperature for cold holding leads to	Probability FBI that
th category of retail food establishment	occurs	foods leads to contamination	holding occurs	pathogen growth	causes death
Proportion of annual servings of the ith food					
category bought by consumers from the jth					
category of retail food establishment for	Probability that				
further preparation by households, which	inappropriate gloved-hand	Probability that inappropriate		Probability that inappropriate	
have been further handled or repackaged by	contact with RTC foods	gloved-hand contact with RTC	Probability that inappropriate	advance preparation leads to	
the retail establishment	occurs	foods leads to contamination	advance preparation occurs	pathogen growth	
	Probability that	Probability that inappropriate			
	inappropriate sanitation or	sanitation or cleaning of			
Proportion of annual servings of ith food	cleaning of cutting	cutting boards/other cutting	Probability that inappropriate	Probability that inappropriate time or	
bought from a source other than a retailer	boards/other cutting	surfaces leads to		temperature for hot holding leads to	
(e.g., farmers market, CSA)	surfaces occurs	contamination		pathogen growth	
Proportion of annual servings of ith food				Probability that food kept at room	
bought from retailer k, but not handled or	Probability that food	by ill person leads to		temperature too long leads to	
repackaged by the retailer	handling by ill person occurs			pathogen growth	
Proportion of annual servings of food sold by	handling by in person occurs	contamination			
the jth category of retail food establishment	Probability that food	Probability that food handling	Probability that inappropriate	Probability that inappropriate	
that is consumed without further preparation	handling by colonized	, , , , , , , , , , , , , , , , , , , ,		thawing of frozen foods leads to	
		by colonized asymptomatic	0		
by a household	asymptomatic carrier occurs	carrier leads to contamination		pathogen growth	
		Probability that inappropriate			
Proportion of annual servings of food sold by	Probability that	sanitation of equipment or		Probability that food served raw or	
retailer k, that require further preparation at	1	utensils leads to	Probability that food served	lightly cooked leads to pathogen	
nome	equipment or utensils occurs	contamination	raw or lightly cooked occurs	growth	
Proportion of annual servings of food that are					
prepared by the jth category of household					

How we determine how many circles are red: Binomial Distribution

S_i~B(N_{Si}, **P(S_i)**)

The binomial distribution is a discrete probability distribution of the number of successes (in our case, when serving of food is contaminated/ the circle is red) in the sequence of n independent yes/no experiments (in our case, the number of annual servings of the ith food category consumed), each of which yields success with probability P(S_i).

Binomial Distribution: How do we use it to get our number of interest?

"Monte Carlo simulation performs risk analysis by building models of possible results by substituting a range of values—a *probability distribution*—for any factor that has inherent uncertainty. It then calculates results over and over, each time using a different set of random values from the probability functions. Depending upon the number of uncertainties and the ranges specified for them, a Monte Carlo simulation could involve thousands or tens of thousands of recalculations before it is complete. Monte Carlo simulation produces distributions of possible outcome values."

Source: <u>http://www.palisade.com/risk/monte_carlo_simulation.asp</u>

What does this mean?

- Let's say we want to estimate the value of x, where x~B(6, 1/2)
- We flip a coin 6 times, and record the number of successes (heads).
- Then we repeat that process again
- And again
- And hundreds, or even thousands of times
- We then take the average of all of these repetitions (or samples), and use that as an estimate of the value of x.

How do we run it?

- The FHPM operates using Microsoft Excel combined with Microsoft Access and the add-in application software @Risk
- Define, select and run an initial baseline scenario, which comprises specific settings of the model's 1,546 parameters
 - The model runs a Monte Carlo simulation using Excel and @Risk, creating distributions for 78 random variables included in the model
 - The baseline scenario defines the parameters to match the current state of the world, according to the researcher's knowledge
- Modify one or more parameters that define the baseline scenario to create a change scenario, and run another Monte Carlo simulation
 - The modifications express changes in parameter values that the user expects to occur because of implementing of a regulation, rule, or any other change under analysis

^{*}Thanks to Richard Bruns for figuring out how to run the model with updated software!

Quick Tricks

- The model is linear (for the most part)
- We only need to run one change scenario for each violation/retailer type and violation/household type combination in order to infer many other scenarios
- If reducing the incidence of improper hand washing in grocery stores by 10% eliminates, for example, 528 illnesses, we can infer that a 20% reduction will eliminate 528*2 = 1056 illnesses, or that a 5% reduction will eliminate 528/2 = 264, etc.
- We can also add the results of individual changes (e.g., a 10% decrease in the incidence of inappropriate hand washing in grocery stores and a 10% decrease in the incidence of inappropriate hand washing in seafood stores) to infer the results of combining different changes
- We cannot do the above when combining changes at the contamination stage and pathogen control stage for the same retailer type or household type combination because one stage feeds into the other

Let's see how it works....